Section:

1. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined so that $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ where

$$A = \begin{bmatrix} 1 & -3 & -2 \\ -1 & 2 & 3 \\ 1 & -4 & -1 \end{bmatrix}, \qquad \vec{\mathbf{u}} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \qquad \vec{\mathbf{b}} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \qquad \text{and} \qquad \vec{\mathbf{c}} = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}$$

(a) Compute $T(\vec{\mathbf{u}})$.

(b) Find all solutions to the equation $T(\vec{x}) = \vec{b}$

(c) Is \vec{c} in the range of T? Justify your answer.

Section:

2. (No Computation) Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined so that $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ where

$$A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & -3 & 2 \end{bmatrix}$$

(a) What is the domain of T?

$$\mathbb{R}^3$$

Ax defined (x in IR3

(b) What is the co-domain of T?

Ax has a rows => Ax in IR3

(c) Describe the Range of T as the span of a set of vectors.

ontputs are obtained by scaling & addi

$$Span \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\} = Range (T)$$

col's of A

3. (No Computation) How many rows and columns must a matrix A have in order to define a mapping from \mathbb{R}^5 into \mathbb{R}^7 by the rule $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$?

inputs

A must be a 7x5 matrix

Complete

Section:

4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined so that $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ where $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$.

Using two axes (one for inputs and one for outputs), show how T transforms the vertices $\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Describe geometrically what the transformation T is doing (using words).

5. Find all the vectors $\vec{\mathbf{x}}$ that are mapped to $\vec{\mathbf{0}}$ by the transformation $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$

where $A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$,

Solve $T(\vec{x}) = \vec{0} \iff \text{Solve } A\vec{x} = \vec{0}$ $\iff \text{reduce } \begin{bmatrix} 1 & 0 & 0 & 1 & | & 0 \\ 0 & 1 & 0 & 1 & | & 0 \\ 1 & 0 & 1 & 0 & | & 0 \end{bmatrix}$

Section: ____

6. What is the definition of a Linear Transformation from \mathbb{R}^n to \mathbb{R}^m ?

7. Let $\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\vec{\mathbf{v}}_1 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$, and $\vec{\mathbf{v}}_2 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps $\vec{\mathbf{x}}$ to $x_1\vec{\mathbf{v}}_1 + x_2\vec{\mathbf{v}}_2$. Find a matrix A so that $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ for every $\vec{\mathbf{x}}$.

$$T(\vec{X}) = \chi_1 \vec{V_1} + \chi_2 \vec{V_2}$$
$$= \chi_1 \begin{bmatrix} 2 \\ -5 \end{bmatrix} + \chi_2 \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

) undo matrix multiplication Name: _

Section:

8. Find the standard matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that sends $\vec{\mathbf{e}}_1$ to $\vec{\mathbf{e}}_1 - 3\vec{\mathbf{e}}_2$ and leaves $\vec{\mathbf{e}}_2$ unchanged.

Recall that
$$\vec{e}_i = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Section:

8. Prove that $T(\vec{\mathbf{x}}) = 3\vec{\mathbf{x}}$ is a linear transformation.

Recall: T is linear (

P Q

(Proof by computation)

Q

P

9. Prove that $T(\vec{\mathbf{x}}) = 3\vec{\mathbf{x}} + 1$ is not linear transformation.

Recall: Tis linen

P CO

(Proof by computation)

7 Q

TP

Name:

Section:

10. Suppose that $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n$ span \mathbb{R}^n , and that T is a linear transformation with $T(\vec{\mathbf{v}}_1) = \vec{\mathbf{0}}, \dots, T(\vec{\mathbf{v}}_n) = \vec{\mathbf{0}}$. Prove that $T(\vec{\mathbf{b}}) = \vec{\mathbf{0}}$ for every $\vec{\mathbf{b}} \in \mathbb{R}^n$.

proof by computation

$$b = c_1 \cdot v_1 \cdot c_2$$
Compule
$$T(\overline{b}) = c_1 \cdot v_1 \cdot c_2$$

Section:

11. Let transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation with

$$T(\vec{\mathbf{e}}_1) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, T(\vec{\mathbf{e}}_2) = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \text{ and } T(\vec{\mathbf{e}}_3) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

(a) Find the standard matrix A of T.

$$A = \left[T(\vec{e}) \ T(\vec{e}_3) \ T(\vec{e}_3) \right] = \left[\begin{array}{cc} 1 & -1 & 2 \\ 3 & 3 & 4 \end{array} \right]$$

(b) Determine if the transformation T is one-to-one.

T is one-to-one (=> columns of A are independent (=> Ax=0 has unique solution

T is onto (columns of A span R2

Section:

12. Let transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation with

$$T(\vec{\mathbf{e}}_1) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, T(\vec{\mathbf{e}}_2) = \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix} \text{ and } T(\vec{\mathbf{e}}_3) = \begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix}.$$

(a) Find the standard matrix A of T.

(b) Determine if the transformation T is one-to-one.

(c) Determine if the transformation T is onto.

Section:

14. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation with standard form matrix A.

Prove that T is not onto. (Cite all relevant definitions and theorems by number).

7P SO T is Not onto

15. Suppose that $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation with standard form matrix A.

Given this info Campon provents T is onto? Justify your answer.

Hint: answer is "No, you cannot know if T is onto or Not onto"

why?

Name:

Section:

Definitions

1. Define Span $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\}$.

$$= \left\{ \vec{b} \quad \text{s.t.} \quad \vec{b} = c_1 \vec{V}_1 + c_2 \vec{V}_2 + c_3 \vec{V}_3 \right\}$$

$$= \left\{ \vec{b} \quad c_1, c_2, c_3 \right\} = \left\{ \vec{b} \quad c_2, c_3 \right\} = \left\{ \vec{b} \quad c_3 \vec{V}_3 \right\}$$

2. Define linear Independence of vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$.

3. Define "T is a linear transformation"

4. Define "T is one-to-one"

5. Define "T is onto"

Name: _

Section:

Theorems

Theorem 2 The reduced echelon form of a linear system has three possible cases

- 1. The system has _____ solutions if ____ it contains [0...015]
- 2. The system has _____ solutions if it has pivot in each veriable column
- 3. The system has ______ solutions if it has variable column w/o pivot

Theorem 4: The columns of an $m \times n$ matrix A span \mathbb{R}^m

if and only if there is a pivot in each row

Theorem 5 If A is an $m \times n$ matrix, $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, Then

•
$$A(\vec{\mathbf{u}} + \vec{\mathbf{v}}) =$$
 $A\vec{\mathbf{u}} + A\vec{\mathbf{v}}$

•
$$A(c \cdot \vec{\mathbf{u}}) = \underline{\qquad c \cdot A \vec{\mathbf{u}}}$$

Properties of Linear Transformations

- If T is linear, then $T(\vec{0}) =$
- T is linear $\iff T(c \cdot \vec{\mathbf{u}} + d \cdot \vec{\mathbf{v}}) = \underline{c} \cdot \mathbf{T}(\vec{\mathbf{u}}) + \underline{d} \cdot \underline{\mathbf{T}}(\vec{\mathbf{v}})$

Theorem 10 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear.

Then there is a unique $m \times n$ matrix A s.t. $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$.

In Fact,
$$A = \left[T(\vec{e}_i) \cdots T(\vec{e}_n) \right]$$
 where $\vec{e}_i = \begin{bmatrix} \vec{e}_i \\ \vec{e}_i \end{bmatrix}$ \cdots $\vec{e}_n = \begin{bmatrix} \vec{e}_i \\ \vec{e}_i \end{bmatrix}$

Theorem 12 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear with standard matrix A. T

- (a) T is onto (columns of A span Rm
- (b) T is one-to-one ⇔ Columns of A are independent linearly.