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1. Let T : R* — R3 be defined so that T'(X) = AX where
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2. (No Computation) Define T : R? — R? be defined so that T'(X) = AX where

2 3 -1
=t 5 7]

(a) What is the domain of T'? ﬁ |

AR Sefins & X n R

N ,
(b) What is the co-domain of 77 ’lF\ [ ety

AR Loa 2 rows D AR R

(c) Describe the Range of T as the span of a set of vectors.

Wy Span § [0 31[2]) = Rage (™)
Gu&—:nj 8 add iy
ks od A

3. (No Computation) How many rows and columns must a matrix A have in order to define a
mapping from R into R” by the rule T'(x) = AX?
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4. Let T : R® — R3 be defined so that T'(X) = AX where A = E (1)] .

Using two axes (one for inputs and one for outputs), show how T transforms the vertices
[0 1] : [(1)] . Describe geometrically what the transformation T is doing (using words).
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5. Find all the vectors X that are mapped to 0 by the transformation T'(x) = Ax

1 001
where A= |0 1 0 1f,
1 010
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6. tht is the definition of a Linear Transformation from R" to R™?

/
1
|
—_ - B - e -
7. Let X = [zl] , V1= [ 25}, and vy = [ 32] ,and let T : R? — R? be a linear transformation
o - _

that maps X to z1V] + z2vs. Find a matrix A so that T(x) = Ax for every X.

2 3
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8. Find the standard matrix of the linear transformation T' : R? — R? that sends e; to €; — 3e,
and leaves e, unchanged. :

Tle)=
T()=
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8. Prove that T'(x) = 3X is a linear transformation.

Ko,_m;lg_f T is bwé:b( | Po @
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9. Prove that T'(X) = 3X + 1 is not linear transformation.
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10. Suppose that v1,...,V, span R", and that T is a linear transformation

with T'(v) = 0,..., T(vp) = 0. Prove that T(B) =0 for every b € R™.
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11. Let transformation 7 : R3® — R? be a linear transformation with

T(@,) = [;] T(@,) = {‘31] and T(8s) = [ﬂ

(a) Find the standard matrix A of T.

o -

(b) Determine if the transformation T is one-to-one.

T is on-to-om & clumus of A ot indi@endent
 AF:B hes targue soludion

(c) Determine if the transformation 7T is onto.

T s onh & cRumms 4 A spes R?
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12. Let transformation T : R3? — R3 be a linear transformation with

<

1 -1 0
T(El) = |0 y T(Ez) = 3 and T(E,g) = |4].
0 0 1

(a) Find the standard matrix A of T.

(b) Determine if the transformation T is one-to-one.

(c) Determine if the transformation T is onto.
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14. Suppose that T : R? — R3 is a linear transformation with standard form matrix A.

Prove that T is not onto. (Cite all relevant definitions and theorems by number).
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15. Suppose that T : R? — R? is a linear transformation with standard form matrix A.

do yoh wspuy A
Aoz Pa's ;«b%ﬁlmn&_l‘_mw& A Swe,

mﬁf" o A St s “Uo) %Ou\ CAV\V\O‘L Know .l( T ;) DI\"‘D o po" OI\("D"

a—

oy’

s

10



Written Homework #04. Math 202 Due

Name: Section:

Definitions

1. Define Span{vj, v, v3}.

— -
= 55‘ s.t. \B‘:C.V:'(' CaVa + C3V3 }
g~ c.,C,¢3 TR

2. Define linear Independence of vectors {v1,Vva, v3}.

Ha VJ' 13 :l\a.lfb\. Qe +
, @ .
Y VitxaVy + X3V3 20 o omey M vl s olichian

3. Define “T is a linear transformation”

4-:) - =
o+ Sa‘\'se\g T(&"i‘v) =z TA+TG) (| L 3V =
)=

T(®R) 2 T@) L <

4. Define “T is one-to-one”

&
T8 “Nes ab Aot oa  Shin

eﬂ\ud—u v

5. Define “T is onto”
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Theorem 2 The reduced echelon form of a linear system has three possible cases
1. The system has o solutions if . ok wontmig 10 01 .J
2. The system has 1 solutions if V€ bad @ivel In eack vearalole olumn

3. The system has e ‘N“‘a. solutions if VT s veaialule C!Q“““' w/o pivst

Theorem 4: The columns of an m X n matrix A span R™

if and only if there is a pivot _4N eack _"_003

Theorem 5 If A is an m X n matrix, u,v € R" and ¢ € R, Then

e AGi+v)=_ AR 4+ AY 2. T('i) = AR

e A= C AR

Properties of Linear Transformations

e If T is linear, then T(a) = o

e Tislinear <> T(c-i+d.v)=_C TCR)* o T(V)

Theorem 10 Let T : R™ — R™ be linear.

Then there is a unique m x n matrix A s.t. T'(X) = Ax.

4 e o e
s Fach, e [ ‘r('e") T(?h;\' W c‘:[gl 'Q,\:[ 6]

Theorem 12 Let T : R® — R™ be linear with standard matrix A. T

(a) T is onto <= c&**LtkA §‘D¢“\ TR“
(b) T is one-to-one <= Cé(.umus & ’4 “N)A;\A &f‘k&k +
&.I\IJ-qLa.
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